3654 reflections with $I > 2\sigma(I)$

3 standard reflections

every 100 reflections

intensity decay: 2.6%

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-Bis(9-hydroxy-9-fluorenyl)biphenylethyl acetate (1/1)

Lidiya Izotova,^a* Jamshid Ashurov,^a Bakhtiyar Ibragimov^a and Edwin Weber^b

^aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev 83. Tashkent 100125. Uzbekistan, and ^bInstitut für Organische Chemie. TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany Correspondence e-mail: l_izotova@yahoo.com

Received 25 June 2008; accepted 23 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.069; wR factor = 0.142; data-to-parameter ratio = 13.3.

In the title host–guest compound, $C_{38}H_{26}O_2 \cdot C_4H_8O_2$, the ethyl acetate molecule (guest), which adopts a fully extended conformation, and the biphenvl derivative (host) are connected via $O-H \cdots O$ hydrogen bonds $[H \cdots O] =$ 1.90 (3) Å] into discrete assemblies. The hydrocarbon skeleton of the host molecule deviates only slightly from C₂ symmetry. The OH groups of the host are involved in intramolecular O- $H \cdots O$ hydrogen bonding $[H \cdots O = 1.83 (3) \text{ Å}].$

Related literature

For related literature, see: Barbour et al. (1993); Ibragimov et al. (2001); Sardone (1996); Sumarna et al. (2003); Weber et al. (1993).

Experimental

Crystal data

$C_{38}H_{26}O_2 \cdot C_4H_8O_2$	$V = 3299.1 (10) \text{ Å}^3$
$M_r = 602.69$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 11.645 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 16.364 (3) Å	T = 293 (2) K
c = 17.471 (3) Å	$0.4 \times 0.2 \times 0.2$ mm
$\beta = 97.72 \ (3)^{\circ}$	

Data collection

Stoe STADI4 diffractometer Absorption correction: none 5807 measured reflections 5650 independent reflections

Refinement

D-

02 **O**1

$R[F^2 > 2\sigma(F^2)] = 0.068$ vR(F ²) = 0.141	H atoms treated by a mixture of independent and constrained
S = 1.20	refinement
650 reflections	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
24 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

-H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H1\cdots O3^{i}$	0.88 (4)	1.90 (4)	2.779 (3)	173 (4)
$-H2\cdots O2$	0.93 (4)	1.84 (4)	2.739 (3)	161 (3)

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2155).

References

- Barbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, E. K. & Wierig, A. (1993). Supramol. Chem. 1, 331-336.
- Ibragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Kohnke, K. (2001). J. Phys. Org. Chem. 14, 697-703.
- Sardone, N. (1996). Private communication (refcode NABNIN). CCDC, Union Road, Cambridge, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.
- Sumarna, O., Seidel, J., Weber, E., Seichter, W., Ibragimov, B. T. & Beketov, K. M. (2003). Cryst. Growth Des. 3, 541-546.
- Weber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl. 32, 606-608.

Acta Cryst. (2008). E64, o1627 [doi:10.1107/S1600536808023271]

2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl-ethyl acetate (1/1)

L. Izotova, J. Ashurov, B. Ibragimov and E. Weber

Comment

Crystalline inclusion compounds (clathrates, host–guest complexes) are of increasing importance in supramolecular chemistry because of their significant potential in addressing a variety of fundamental and practical issues. 2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl (I) is a host compound with good clathrate-forming ability and the crystal structures of its inclusion compounds with acetonitrile, cyclohexanone, n-propylamine (Barbour *et al.*, 1993), acetone (three solvates) (Sardone, 1996; Ibragimov *et al.*, 2001) and chloroform (two solvates) (Sumarna *et al.*, 2003) were reported. Here, we report the crystal structure of a host–guest complex of (I) with ethyl acetate which resembles closely that of (I) with acetone (1/1) (Sardone, 1996). The molecule of (I) has three conformational degrees of freedom (rotation around the central aryl–aryl single bond and rotations around the aryl–fluorenyl bonds), however it exhibits considerable conformational rigidity due to the stabilizing effect of the intramolecular O—H···O hydrogen bond between the hydroxyl groups (Fig. 1, Table 1). The crystal packing is mainly stabilized by van der Waals forces (Fig.2).

Experimental

2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl was synthesized according to the procedure described by Weber *et al.*, (1993). The stable in the air crystals were grown by slow evaporation from ethyl acetate solution.

Refinement

H atoms from the OH groups were located from difference Fourier maps and fully refined. The remaining H atoms were positioned geometrically (C—H 0.93–0.98 Å) and refined as riding on their carrier atoms with $U_{iso}(H) = 1.2U_{eq}(C)$, except the methyl groups where $U_{iso}(H) = 1.5U_{eq}(C)$.

Figures

Fig. 1. Perspective view of the title compound, showing 30% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bonds.

Fig. 2. Packing diagram of the title compound (I) viewed down the *a* axis. H atoms have been ommited for clarity. Hydrogen bonds are shown as dashed lines.

2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl-ethyl acetate (1/1)

Crystal data	
$C_{38}H_{26}O_2 \cdot C_4H_8O_2$	$F_{000} = 1272$
$M_r = 602.69$	$D_{\rm x} = 1.213 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
<i>a</i> = 11.645 (2) Å	$\theta = 10-20^{\circ}$
b = 16.364 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 17.471 (3) Å	T = 293 (2) K
$\beta = 97.72 \ (3)^{\circ}$	Block, colourless
$V = 3299.1 (10) \text{ Å}^3$	$0.4\times0.2\times0.2~mm$
Z = 4	

Data collection

Stoe STADI4 diffractometer	$R_{\rm int} = 0.0000$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.6^{\circ}$
T = 293(2) K	$h = -13 \rightarrow 11$
$\omega/2\theta$ scans	$k = 0 \rightarrow 19$
Absorption correction: none	$l = 0 \rightarrow 20$
5650 measured reflections	3 standard reflections
5807 independent reflections	every 100 reflections
3654 reflections with $I > 2\sigma(I)$	intensity decay: 2.6%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.068$	$w = 1/[\sigma^2(F_o^2) + (0.0281P)^2 + 2.047P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.141$	$(\Delta/\sigma)_{max} < 0.001$

S = 1.20 5650 reflections

424 parameters

 $\Delta \rho_{\min} = -0.16 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4}

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0048 (4)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z	$U_{\rm iso}*/U_{\rm eq}$
01	0.70308 (18)	0.69051 (14)	0.20949 (13)	0.0518 (6)
02	0.63649 (17)	0.85042 (13)	0.21819 (12)	0.0470 (5)
C1	0.8676 (3)	0.62161 (19)	0.1739 (2)	0.0511 (8)
C2	0.8325 (3)	0.5837 (2)	0.1044 (2)	0.0716 (11)
H2A	0.7765	0.6073	0.0681	0.086*
C3	0.8827 (4)	0.5090 (3)	0.0897 (3)	0.0937 (14)
НЗА	0.8596	0.4822	0.0432	0.112*
C4	0.9657 (5)	0.4747 (3)	0.1430 (4)	0.0995 (17)
H4A	0.9982	0.4248	0.1321	0.119*
C5	1.0019 (3)	0.5126 (3)	0.2122 (3)	0.0828 (13)
H5A	1.0588	0.4889	0.2478	0.099*
C6	0.9523 (3)	0.5867 (2)	0.2280 (2)	0.0616 (10)
C7	0.9683 (3)	0.6387 (2)	0.2964 (2)	0.0633 (10)
C8	1.0404 (4)	0.6306 (3)	0.3666 (3)	0.0891 (14)
H8A	1.0925	0.5874	0.3749	0.107*
C9	1.0330 (5)	0.6877 (4)	0.4232 (3)	0.1026 (18)
H9A	1.0814	0.6831	0.4698	0.123*
C10	0.9559 (4)	0.7516 (3)	0.4126 (2)	0.0903 (14)
H10A	0.9510	0.7885	0.4526	0.108*
C11	0.8848 (3)	0.7614 (2)	0.3424 (2)	0.0701 (10)
H11A	0.8334	0.8050	0.3343	0.084*
C12	0.8930 (3)	0.7041 (2)	0.28501 (19)	0.0545 (9)
C13	0.8229 (3)	0.70131 (18)	0.20394 (17)	0.0460 (7)
C14	0.8464 (3)	0.77519 (18)	0.15426 (17)	0.0434 (7)
C15	0.9585 (3)	0.8074 (2)	0.16490 (18)	0.0527 (8)

H15A	1.0139	0.7835	0.2013	0.063*
C16	0.9899 (3)	0.8735 (2)	0.1234 (2)	0.0592 (9)
H16A	1.0655	0.8931	0.1315	0.071*
C17	0.9087 (3)	0.9100 (2)	0.07009 (19)	0.0597 (9)
H17A	0.9284	0.9551	0.0422	0.072*
C18	0.7978 (3)	0.87899 (19)	0.05842 (18)	0.0524 (8)
H18A	0.7434	0.9038	0.0219	0.063*
C19	0.7638 (3)	0.81209 (18)	0.09903 (16)	0.0433 (7)
C20	0.6441 (3)	0.77988 (17)	0.06964 (16)	0.0423 (7)
C21	0.6384 (3)	0.73514 (19)	0.00138 (17)	0.0523 (8)
H21A	0.7072	0.7234	-0.0180	0.063*
C22	0.5355 (3)	0.7074 (2)	-0.03899 (18)	0.0584 (9)
H22A	0.5351	0.6771	-0.0840	0.070*
C23	0.4340 (3)	0.7258 (2)	-0.01101 (18)	0.0578 (9)
H23A	0.3637	0.7078	-0.0371	0.069*
C24	0.4363 (3)	0.77059 (19)	0.05528 (18)	0.0514 (8)
H24A	0.3665	0.7831	0.0730	0.062*
C25	0.5396 (3)	0.79833 (17)	0.09746 (16)	0.0414 (7)
C26	0.5264 (2)	0.84892 (18)	0.16933 (16)	0.0424 (7)
C27	0.4832 (3)	0.93557 (18)	0.14954 (17)	0.0470 (8)
C28	0.5316 (3)	0.9954 (2)	0.10912 (19)	0.0614 (9)
H28A	0.5993	0.9855	0.0878	0.074*
C29	0.4774 (4)	1.0712 (2)	0.1008 (2)	0.0726 (11)
H29A	0.5088	1.1124	0.0733	0.087*
C30	0.3779 (4)	1.0858 (2)	0.1327 (2)	0.0762 (12)
H30A	0.3433	1.1370	0.1270	0.091*
C31	0.3284 (3)	1.0264 (2)	0.1728 (2)	0.0682 (10)
H31A	0.2605	1.0367	0.1938	0.082*
C32	0.3816 (3)	0.9507 (2)	0.18140 (17)	0.0511 (8)
C33	0.3506 (3)	0.8771 (2)	0.22174 (17)	0.0503 (8)
C34	0.2593 (3)	0.8615 (3)	0.2634 (2)	0.0678 (11)
H34A	0.2048	0.9018	0.2692	0.081*
C35	0.2510 (3)	0.7854 (3)	0.2959 (2)	0.0734 (12)
H35A	0.1899	0.7743	0.3235	0.088*
C36	0.3315 (3)	0.7256 (3)	0.28821 (19)	0.0673 (10)
H36A	0.3241	0.6746	0.3105	0.081*
C37	0.4236 (3)	0.7407 (2)	0.24757 (18)	0.0548 (9)
H37A	0.4785	0.7005	0.2425	0.066*
C38	0.4321 (3)	0.81679 (19)	0.21478 (16)	0.0451 (8)
C39	0.5324 (3)	0.5281 (3)	0.1162 (2)	0.0869 (13)
H39A	0.5772	0.4805	0.1328	0.130*
H39B	0.5655	0.5751	0.1437	0.130*
H39C	0.5330	0.5360	0.0618	0.130*
C40	0.4118 (4)	0.5169 (2)	0.1319 (2)	0.0696 (11)
C41	0.2259 (3)	0.5774 (3)	0.1255 (3)	0.0903 (13)
H41A	0.2232	0.5760	0.1807	0.108*
H41B	0.1883	0.5287	0.1026	0.108*
C42	0.1664 (4)	0.6520 (3)	0.0910 (3)	0.0979 (15)
H42A	0.0869	0.6516	0.1003	0.147*

H42B	0.1695	0.6527	0.0364	0.147*
H42C	0.2043	0.6997	0.1142	0.147*
O3	0.3748 (3)	0.45679 (18)	0.15903 (17)	0.0996 (10)
O4	0.3455 (2)	0.58069 (16)	0.11015 (16)	0.0795 (8)
H2	0.677 (3)	0.741 (2)	0.223 (2)	0.092 (14)*
H1	0.627 (3)	0.883 (2)	0.257 (2)	0.098 (15)*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0430 (13)	0.0475 (14)	0.0667 (15)	-0.0008 (11)	0.0142 (11)	0.0074 (12)
O2	0.0447 (13)	0.0490 (13)	0.0467 (13)	0.0032 (10)	0.0036 (10)	-0.0076 (11)
C1	0.0485 (19)	0.0426 (19)	0.065 (2)	-0.0026 (16)	0.0176 (17)	0.0049 (17)
C2	0.082 (3)	0.051 (2)	0.084 (3)	0.002 (2)	0.018 (2)	-0.008 (2)
C3	0.119 (4)	0.057 (3)	0.112 (4)	0.005 (3)	0.040 (3)	-0.018 (3)
C4	0.107 (4)	0.050 (3)	0.155 (5)	0.011 (3)	0.068 (4)	0.007 (3)
C5	0.063 (3)	0.059 (3)	0.132 (4)	0.013 (2)	0.037 (3)	0.035 (3)
C6	0.050 (2)	0.048 (2)	0.089 (3)	0.0038 (17)	0.021 (2)	0.021 (2)
C7	0.049 (2)	0.066 (2)	0.074 (3)	-0.0098 (19)	0.0057 (19)	0.030 (2)
C8	0.071 (3)	0.097 (4)	0.094 (3)	-0.016 (3)	-0.007 (3)	0.050 (3)
C9	0.104 (4)	0.126 (5)	0.071 (3)	-0.048 (4)	-0.016 (3)	0.042 (3)
C10	0.099 (4)	0.116 (4)	0.054 (3)	-0.047 (3)	0.007 (2)	0.004 (3)
C11	0.071 (3)	0.079 (3)	0.061 (2)	-0.021 (2)	0.011 (2)	0.002 (2)
C12	0.053 (2)	0.057 (2)	0.053 (2)	-0.0129 (18)	0.0085 (16)	0.0087 (17)
C13	0.0390 (18)	0.0460 (18)	0.0540 (19)	-0.0014 (14)	0.0100 (14)	0.0024 (15)
C14	0.0471 (19)	0.0391 (17)	0.0466 (18)	-0.0027 (14)	0.0155 (15)	-0.0051 (14)
C15	0.047 (2)	0.056 (2)	0.055 (2)	-0.0029 (17)	0.0090 (16)	-0.0008 (17)
C16	0.056 (2)	0.063 (2)	0.063 (2)	-0.0176 (18)	0.0205 (18)	-0.0044 (19)
C17	0.073 (3)	0.053 (2)	0.056 (2)	-0.0111 (19)	0.0217 (19)	0.0012 (17)
C18	0.061 (2)	0.048 (2)	0.0491 (19)	-0.0008 (17)	0.0138 (16)	0.0026 (16)
C19	0.0537 (19)	0.0388 (17)	0.0392 (16)	0.0013 (15)	0.0131 (14)	-0.0020 (14)
C20	0.0490 (19)	0.0391 (17)	0.0389 (16)	0.0011 (14)	0.0066 (14)	0.0019 (13)
C21	0.063 (2)	0.050 (2)	0.0453 (18)	0.0062 (17)	0.0116 (16)	-0.0004 (15)
C22	0.083 (3)	0.051 (2)	0.0395 (18)	-0.0038 (19)	0.0034 (18)	-0.0082 (16)
C23	0.066 (2)	0.059 (2)	0.0458 (19)	-0.0139 (18)	-0.0034 (17)	-0.0015 (17)
C24	0.051 (2)	0.054 (2)	0.0489 (19)	-0.0045 (16)	0.0051 (16)	0.0017 (16)
C25	0.0466 (19)	0.0363 (16)	0.0411 (16)	-0.0015 (14)	0.0054 (14)	0.0038 (13)
C26	0.0416 (18)	0.0440 (18)	0.0418 (17)	0.0010 (14)	0.0059 (14)	-0.0029 (14)
C27	0.055 (2)	0.0431 (18)	0.0416 (17)	0.0042 (15)	0.0021 (15)	-0.0021 (15)
C28	0.078 (3)	0.051 (2)	0.057 (2)	0.0031 (19)	0.0170 (19)	-0.0005 (17)
C29	0.110 (3)	0.046 (2)	0.061 (2)	0.006 (2)	0.008 (2)	0.0046 (18)
C30	0.113 (4)	0.055 (2)	0.058 (2)	0.033 (2)	0.003 (2)	-0.0008 (19)
C31	0.077 (3)	0.072 (3)	0.056 (2)	0.029 (2)	0.0095 (19)	0.002 (2)
C32	0.053 (2)	0.055 (2)	0.0449 (18)	0.0139 (17)	0.0031 (15)	-0.0025 (16)
C33	0.0410 (19)	0.067 (2)	0.0424 (17)	0.0075 (17)	0.0030 (14)	-0.0042 (16)
C34	0.044 (2)	0.102 (3)	0.058 (2)	0.012 (2)	0.0087 (17)	0.001 (2)
C35	0.052 (2)	0.117 (4)	0.052 (2)	-0.015 (2)	0.0106 (18)	0.007 (2)
C36	0.067 (2)	0.083 (3)	0.051 (2)	-0.018 (2)	0.0041 (19)	0.0135 (19)

C37	0.056(2)	0.055(2)	0.053(2)	-0.0053(17)	0.0055 (17)	0.0032 (16)
C38	0.020(2) 0.0438(18)	0.052(2)	0.039(2)	-0.0020(17)	0.0035(17) 0.0046(14)	-0.0002(10)
C39	0.072 (3)	0.086(3)	0.099(3)	0.003 (2)	-0.003(2)	0.013 (3)
C40	0.072(3)	0.062 (3)	0.057(2)	-0.009(2)	-0.004(2)	0.015(2)
C41	0.072 (3)	0.103 (4)	0.100(3)	-0.019(3)	0.027(3)	0.007(3)
C42	0.071(3)	0.095 (3)	0.130 (4)	0.000 (3)	0.024(3)	-0.001(3)
03	0.119 (2)	0.086 (2)	0.091 (2)	-0.0147(19)	0.0023(18)	0.0400 (18)
04	0.0705 (18)	0.0692 (18)	0.101 (2)	-0.0052(14)	0.0190 (15)	0.0229 (15)
	()		(_)			
Geometric param	neters (Å, °)					
O1—C13		1.423 (3)	C22—C	223	1.372	(5)
O1—H2		0.93 (4)	С22—Н	H22A	0.9300)
O2—C26		1.442 (3)	C23—C	224	1.368	(4)
O2—H1		0.88 (4)	C23—H	H23A	0.9300)
C1—C2		1.375 (5)	C24—C	225	1.399	(4)
C1—C6		1.394 (4)	C24—H	124A	0.9300)
C1—C13		1.524 (4)	C25—C	226	1.529	(4)
C2—C3		1.394 (5)	C26—C	227	1.528	(4)
C2—H2A		0.9300	C26—C	238	1.532	(4)
C3—C4		1.369 (6)	C27—C	228	1.372	(4)
С3—НЗА		0.9300	C27—C	232	1.396	(4)
C4—C5		1.373 (6)	C28—C	229	1.391	(5)
C4—H4A		0.9300	C28—H	128A	0.9300)
C5—C6		1.388 (5)	C29—C	230	1.372	(5)
C5—H5A		0.9300	C29—H	129A	0.9300)
С6—С7		1.457 (5)	C30—C	231	1.370	(5)
C7—C12		1.382 (5)	C30—H	130A	0.9300)
С7—С8		1.397 (5)	C31—C	232	1.384	(4)
С8—С9		1.370 (6)	C31—H	H31A	0.9300)
C8—H8A		0.9300	C32—C	233	1.464	(4)
C9—C10		1.375 (7)	C33—C	238	1.386	(4)
С9—Н9А		0.9300	C33—C	234	1.390	(4)
C10-C11		1.394 (5)	C34—C	235	1.378	(5)
C10—H10A		0.9300	C34—H	134A	0.9300)
C11—C12		1.385 (5)	C35—C	236	1.374	(5)
C11—H11A		0.9300	C35—H	135A	0.9300)
C12—C13		1.537 (4)	C36—C	237	1.386	(5)
C13—C14		1.534 (4)	C36—H	136A	0.9300)
C14—C15		1.396 (4)	C37—C	238	1.379	(4)
C14—C19		1.404 (4)	С37—Н	137A	0.9300)
C15—C16		1.378 (4)	C39—C	240	1.478	(5)
C15—H15A		0.9300	C39—H	139A	0.9600)
C16—C17		1.372 (5)	C39—H	139B	0.9600)
C16—H16A		0.9300	C39—H	139C	0.9600)
C17—C18		1.377 (4)	C40—C)3	1.197	(4)
C17—H17A		0.9300	C40—C	04	1.323	(4)
C18—C19		1.391 (4)	C41—C	04	1.454	(4)
C18—H18A		0.9300	C41—C	242	1.491	(5)

C19—C20	1.514 (4)	C41—H41A	0.9700
C20—C21	1.393 (4)	C41—H41B	0.9700
C20—C25	1.403 (4)	C42—H42A	0.9600
C21—C22	1.383 (4)	C42—H42B	0.9600
C21—H21A	0.9300	C42—H42C	0.9600
С13—О1—Н2	106 (2)	C24—C23—H23A	120.0
C26—O2—H1	106 (3)	С22—С23—Н23А	120.0
C2—C1—C6	120.9 (3)	C23—C24—C25	122.5 (3)
C2—C1—C13	128.0 (3)	C23—C24—H24A	118.7
C6—C1—C13	111.1 (3)	C25—C24—H24A	118.7
C1—C2—C3	118.5 (4)	C24—C25—C20	118.2 (3)
C1—C2—H2A	120.8	C24—C25—C26	115.7 (3)
C3—C2—H2A	120.8	C20—C25—C26	126.1 (3)
C4—C3—C2	120.6 (5)	O2—C26—C27	110.9 (2)
С4—С3—Н3А	119.7	O2—C26—C25	108.4 (2)
С2—С3—НЗА	119.7	C27—C26—C25	112.5 (2)
C3—C4—C5	121.3 (4)	O2—C26—C38	110.0 (2)
C3—C4—H4A	119.4	C27—C26—C38	101.5 (2)
C5—C4—H4A	119.4	C25—C26—C38	113.4 (2)
C4-C5-C6	118 9 (4)	$C_{28} - C_{27} - C_{32}$	120.5(3)
C4—C5—H5A	120.6	$C_{28} - C_{27} - C_{26}$	120.0(3) 129.3(3)
C6—C5—H5A	120.6	$C_{32} - C_{27} - C_{26}$	1102(3)
C5-C6-C1	1199(4)	$C_{27} - C_{28} - C_{29}$	118.2(3)
C5-C6-C7	131.5 (4)	C27—C28—H28A	120.7
C1 - C6 - C7	108.6 (3)	C29—C28—H28A	120.7
$C_{12} - C_{7} - C_{8}$	1196(4)	C_{30} C_{29} C_{28}	120.7
$C_{12} = C_{7} = C_{6}$	109.0(3)	C_{30} C_{29} H_{29A}	119.7
C8 - C7 - C6	131.4(4)	$C_{28} - C_{29} - H_{29A}$	119.7
C9 - C8 - C7	1187(5)	$C_{20} = C_{20} = C_{20}$	121.4(3)
C9 - C8 - H8A	120.6	C31-C30-H30A	110.3
C7 - C8 - H8A	120.6	C29-C30-H30A	119.3
C_{8}^{-} C_{9}^{-} C_{10}^{-}	120.0	$C_{22} = C_{31} = C_{32}$	119.5 118.5(3)
	119.2	C30-C31-H31A	120.7
$C_{0} = C_{0} = H_{0}$	110.2	$C_{30} = C_{31} = H_{31A}$	120.7
C_{10} C_{10} C_{11}	119.2	$C_{32} = C_{31} = C_{32} = C_{37}$	120.7 120.4(3)
C_{9} C_{10} H_{10A}	120.5 (5)	$C_{31} = C_{32} = C_{23}$	120.4(3) 130.7(3)
C11 C10 H10A	119.0	$C_{27} = C_{22} = C_{23}$	130.7(3)
C_{11} C_{10} C_{10} C_{10}	119.0	$C_2 / - C_{32} - C_{33} $	100.0(3) 110.7(3)
$C_{12} = C_{11} = C_{10}$	110.0 (4)	$C_{38}^{} C_{33}^{} C_{34}^{}$	119.7(3)
C12—C11—H11A	121.0	$C_{30} = C_{33} = C_{32}$	109.1(3) 121.1(2)
C10-C11-HITA	121.0	$C_{34} = C_{35} = C_{32}$	131.1(3) 1180(2)
$C_{1} = C_{12} = C_{11}$	121.0(3)	$C_{35} = C_{34} = C_{35}$	118.9 (5)
$C_{1} = C_{12} = C_{13}$	111.0(3)	C35—C34—H34A	120.0
C11 - C12 - C13	127.4(3)	C35—C34—H34A	120.0
01 - 012 - 014	107.3(2)	$C_{30} = C_{33} = C_{34}$	121.1 (3)
01 - 012 - 014	112.8(2)	C30—C35—H35A	119.4
$C_1 = C_{12} = C_{14}$	112.0(2)	C_{34} C_{33} C_{35} C_{25} C_{26} C_{27}	117.4
$C_1 = C_{12} = C_{12}$	110.2(2)	$C_{25} = C_{26} = U_{26}$	120.3 (4)
C1 - C13 - C12	100.4 (3)	C35-C36-H36A	119.7
U14—U13—U12	112.7 (3)	C3/C30H30A	119./

C15—C14—C19	118.1 (3)	C38—C37—C36	118.5 (3)
C15—C14—C13	117.2 (3)	С38—С37—Н37А	120.7
C19—C14—C13	124.8 (3)	С36—С37—Н37А	120.7
C16—C15—C14	122.4 (3)	C37—C38—C33	121.2 (3)
C16—C15—H15A	118.8	C37—C38—C26	128.4 (3)
C14—C15—H15A	118.8	C33—C38—C26	110.3 (3)
C17—C16—C15	119.4 (3)	С40—С39—Н39А	109.5
C17—C16—H16A	120.3	С40—С39—Н39В	109.5
C15—C16—H16A	120.3	H39A—C39—H39B	109.5
C16—C17—C18	119.2 (3)	С40—С39—Н39С	109.5
C16—C17—H17A	120.4	Н39А—С39—Н39С	109.5
С18—С17—Н17А	120.4	Н39В—С39—Н39С	109.5
C17—C18—C19	122.7 (3)	O3—C40—O4	122.3 (4)
C17—C18—H18A	118.7	O3—C40—C39	125.3 (4)
C19—C18—H18A	118.7	O4—C40—C39	112.4 (3)
C18—C19—C14	118.3 (3)	O4—C41—C42	107.5 (3)
C18—C19—C20	114.4 (3)	O4—C41—H41A	110.2
C14—C19—C20	126.7 (3)	C42—C41—H41A	110.2
C21—C20—C25	117.8 (3)	O4—C41—H41B	110.2
C21—C20—C19	114.2 (3)	C42—C41—H41B	110.2
C25—C20—C19	127.6 (3)	H41A—C41—H41B	108.5
C22—C21—C20	123.2 (3)	C41—C42—H42A	109.5
C22—C21—H21A	118.4	C41—C42—H42B	109.5
C20-C21-H21A	118.4	H42A—C42—H42B	109.5
C23—C22—C21	118.4 (3)	C41—C42—H42C	109.5
C23—C22—H22A	120.8	H42A—C42—H42C	109.5
C21—C22—H22A	120.8	H42B—C42—H42C	109.5
C24—C23—C22	120.0 (3)	C40—O4—C41	117.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H1···O3 ⁱ	0.88 (4)	1.90 (4)	2.779 (3)	173 (4)
O1—H2···O2	0.93 (4)	1.84 (4)	2.739 (3)	161 (3)
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+1/2$.				

Fig. 1

Fig. 2

